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1 Introduction

Research unveiled in December of 2008 [15] showed how MD5’s long-known
flaws could be actively exploited to attack the real-world Certification Author-
ity infrastructure. In this paper, we demonstrate two new classes of collision,
which will be somewhat trickier to address than previous attacks against X.509:
the applicability of MD2 preimage attacks against the primary root certifi-
cate for Verisign, and the difficulty of validating X.509 Names contained within
PKCS#10 Certificate Requests. We also draw particular attention to two possi-
bly unrecognized vectors for implementation flaws that have been problematic in
the past: the ASN.1 BER decoder required to parse PKCS#10, and the poten-
tial for SQL injection from text contained within its requests. Finally, we explore
why the implications of these attacks are broader than some have realized —
first, because Client Authentication is sometimes tied to X.509, and second,
because Extended Validation certificates were only intended to stop phishing
attacks from names similar to trusted brands. As per the work of Adam Barth
and Collin Jackson [4], EV does not prevent an attacker who can synthesize or
acquire a “low assurance” certificate for a given name from acquiring the “green
bar” EV experience.

The attacks we will discuss in this paper fall into the following categories:

1. MD2RSA Signature Transfer: Verisign’s MD2 root can be exploited by
creating a malicious intermediate with the same MD2 hash as its parent and
transfering the signature from the root to the malicious intermediate.

2. Subject Name Confusion: Inconsistent interpretation of the Subject X.509
Name in a PKCS#10 request can cause a CA to emit a certificate for an
unauthorized Common Name. Existing PKCS APIs vary in their handling of
Common Names and Subject Names, and these differences can be exploited
in a number of ways which we will explore in detail.

3. PKCS#10-Tunneled SQL Injection: Certificate Authorities inserting
PKCS#10 Subject Names into a database do not necessarily employ com-
prehensive string validation for the BMPString, UTF8String and Universal-
String types, which allows SQL injection attacks. Given the special trust
that a CA’s database backend presupposes for the rest of the Internet, SQL
injection is especially problematic.



4. PKCS#10-Tunneled ASN.1 Attacks: Certificate Authorities exposing
a PKCS#10 receiver may be exposing unhardened ASN.1 BER listeners.
ASN.1 BER is tricky to parse, with many possibilities for consistent and
predictably exploitable attack surfaces. The PROTOS project [12] found a
large number of vulnerabilities via the SNMP consumer, but it is possible
that some of the ASN.1 BER parsers found in commercial CA implemen-
tations were not covered in the 2002 PROTOS lockdown and thus are still
vulnerable.

5. Generic SSL Client Authentication Bypass: The MD2 attacks in this
paper may have larger implications in certain deployments. An attacker with
the ability to directly issue certificates — rather than just the ability to
get an arbitrary X.509 Subject Name past a validator — gets access to the
“Client Authentication” EKU (Extended Key Usage) attribute that controls
whether a certificate allows for authenticating a client to a server. Since
Root CAs do not normally issue certificates with “Client Authentication”
set, some systems may not test for what would happen if such a certificate
arrived. This may create a generic authentication bypass in some systems. A
similar bypass may be extended from Stevens and Sotirov’s MD5 collisions,
in situations where the Client Authentication EKU (which is not present in
the root certificate they attacked) is insufficiently validated.

6. EV Hijacking: EV certs were designed to address phishing attacks where a
bank at www.bankoffoo.com is suffering attacks from the owner of
www.bank-of-foo.com or www.bankofoo.com. They were specifically not de-
signed to deal with the case where an attacker has a certificate, even a low
assurance certificate, for www.bankoffoo.com, and the attacker has a DNS
or other route manipulation attack, e.g. DNS cache poisoning [19]. Barth and
Jackson have shown that browsers do not enforce a scripting barrier between
https://www.bankoffoo.com (EV certified) and
https://www.bankoffoo.com (Low Assurance certified). Thus, an attacker
need simply proxy enough of an SSL session to get the main HTML of a
page loaded in EV (thus causing the green bar), then kill the TCP session.
After that, the attacker can host any script from the Low Assurance cert,
and that script will inevitably be merged with the real site with no negative
impact on the EV experience.

We will summarize the recent history of attacks against the CA infrastructure;
describe the methodology used to discover the attacks listed above; investigate
these attacks in greater detail; outline a principled approach for remediating
these issues and what steps browser manufacturers, cryptographic API manu-
facturers and certificate authorities need to take; and finally, identify directions
for future work.

2 Background

The SSL protocol [2] is used for encrypting reliable data flows from one endpoint
to another. But encryption without authentication is worthless: one can easily



end up encrypting information with the key of an attacker! SSL manages au-
thentication via certificates — assertions of identity that are cryptographically
signed by mutually trusted third parties known as Certificate Authorities, or
CAs. Verisign is probably the Internet’s most well known CA, but the CA in-
frastructure includes over 200 issuers, all of whom handle edge cases in slightly
different ways [3]. During 2008, the CA system weathered a series of shocks.
Mike Zusman of Intrepidus Research was able to bypass whois validation at
one CA by claiming his desired certificate — for Microsoft’s www.live.com —
was to be used “for internal servers only”. The CA Startcom also discovered a
competing CA that entirely failed to check whether a certificate requester was a
legitimate representative for the domain in question.

Beyond these implementation flaws, Kaminsky [19] exposed the basic design
of CA validation via both whois email and HTTPS-via-IP-in-DNS as faulty
by means of DNS cache poisoning attacks. If DNS is compromised at the CA,
both the email and the HTTPS connection can easily be subverted. While DNS
has been remediated at all known CAs, other route manipulation mechanisms,
such as Pilosov’s BGP attacks [11], create some continuing exposure (though the
BGP stream is small enough, and logged enough, for firms such as Renesys to
know immediately if such an attack took place).

The most widely publicized attack against CAs in some time occurred in De-
cember 2008, with Stevens and Sotirov’s applied work against CAs that still used
MD5 as their hash algorithm for certificate signing. MD5 had been known to be
insecure since at least 1996, with a regular stream of findings against the algo-
rithm, punctuated in particular by the generation of MD5 collisions in 2004 [20]
and the extension of these attacks to chosen prefix attacks in 2007 [14]. Stevens
and Sotirov demonstrated a real-world application of the chosen-prefix attack
by finding a CA, RapidSSL, that used MD5 and generated entirely predictable
certificates (in particular, the Serial Number and Signing/Expiration time fields)
and giving it a PKCS#10 request that forced it to generate a certificate that had
the same MD5 hash as an intermediate certificate they had already generated.
They then transferred RapidSSL’s signature to their intermediate certificate,
creating a forged certificate that could issue certificates for www.bank.com.

Luckily, very few CAs used MD5 at that time, and since then they have
switched to SHA-1. However, the use of SHA-1 does not prevent the attacks we
describe below.

2.1 Current status of these vulnerabilities

In this paper, we discuss the vulnerabilities we have discovered as they pertain
to versions of X.509 certificate vendors and browser software in early 2009, prior
to our disclosure of these attacks to the affected parties. Many of the attacks we
describe have been patched or mitigated through our collaboration with vendors,
prior to our public disclosure in August 2009. In particular, the Verisign MD2
root certificate has been superseded in Internet Explorer, Mozilla, Chrome, An-
droid, Safari, Opera, and NSS; Postfix has remediated the early null termination



issue; and Microsoft’s CryptoAPI has remediated early null termination and the
integer-overflow inefficient encoding issue.

However, due to the issue of legacy code persisting long after security updates
have become available, the potential for attacks executed using malicious X.509
certificates issued prior to the discovery of these flaws, and the impossibility
of evaluating every X.509 infrastructure in use (especially those used internally
to organizations whose CAs are not exposed to the greater Internet), these at-
tacks remain relevant today. We refer the reader to the individual vendors for
comprehensive attack resistance information.

3 Methodology

Although ASN.1 is a well-established standard, not all ASN.1 parsers are created
equal. It is a complicated format, requiring a context-sensitive parser. Context-
free grammars can easily be converted to parsers using a parser generator such
as yacc or bison, but generating a context-sensitive parser is difficult in main-
stream (i.e., strictly evaluated) languages [8]. Moreover, the ASN.1 specification
is not written in a fashion conducive to implementing an ASN.1 parser with a
parser generator. Thus, in practice, the ASN.1 parsers that X.509 implementa-
tions rely on are handwritten, and the likelihood that the parse trees generated3

by two separate implementations will vary (in other words, that they implement
slightly different grammars) is high. The context-free equivalence problem —
“given two CFGs, F and G, determine whether L(F ) = L(G)” — is known to
be undecidable, and thus the context-sensitive equivalence problem is as well.

Therefore, since there can be no guarantee that two ASN.1 parsers that were
not generated from a CSG specification actually parse the exact same language,
we examined subtle differences in the ways that different ASN.1 parsers handle
X.509 certificates. We also deliberately focused on unusual representations of
key components of an X.509 certificate, such as OIDs and Common Names:
if one implementation can be tricked into misinterpreting a sequence, S, as a
desired sequence, S′, we can get a CA using an implementation which does not

misinterpret S to sign a certificate containing S, and any browser using the first
implementation will treat the certificate as a valid, signed certificate containing
S′. All of our Subject Name confusion attacks rely on this strategy, and until
ASN.1 implementations can agree on a consistent, well-defined grammar from
which to generate their parsers, it is certain that similar attacks will emerge.

4 Attacks

4.1 MD2RSA Signature Transfer

As late as 1998, Verisign was still issuing certificates using a predecessor of
MD5, the MD2 algorithm [3]. Historically, in the choice between MD2, MD4,

3 This is a simplification; most ASN.1 parsers do not explicitly generate parse trees
that can be recovered, but mathematically a tree structure exists.



and MD5, MD2 offered the highest security level at the expense of speed [6].
However, ten years after RFC 2313 advocated MD2, a 273 preimage attack was
published [18]. Although 273 is well outside the bounds of trivial computation,
given that the previous attack was on the order of 297 [9], this can be considered
one mathematical advance away from a distributed-computation work effort.

Given that MD2RSA has not been used to sign certificates for over a decade,
it is reasonable to ask whether it would matter if MD2 fell. Unfortunately, the an-
swer is yes. Verisign’s primary root certificate — which is trusted by all browsers,
and required to validate certificates from sites such as
https://www.amazon.com — is signed with MD2RSA. Anything that this cer-
tificate signs is fully trusted. However, signatures are only valid across hashes,
and Verisign has signed its own root certificate’s MD2 hash. Thus, if we can
generate an intermediate CA certificate with the same MD2 hash as Verisign’s
root, we can transfer the RSA signature from the root to the intermediate, and
the signature will still be valid. Like Stevens and Sotirov, this attack transfers
a signature from a legitimate certificate to a forged one, using the preimage to
keep the signature valid. However, this attack can be performed entirely offline:
there is no need to trick a CA server into signing something it ought not to.

As of August 2009, Verisign has reissued its root certificate using SHA-1 as
the signature hash. The MD2-signed certificate cannot be revoked, but as the
new certificate replaces the old one in shipped browsers, the number of browsers
still using the MD2 certificate will dwindle, rendering this attack obsolete. We
informed Verisign of our discovery early in our work, and their SHA-1 reissue
was a direct response to this.

4.2 Subject Name Confusion

Acquiring a certificate involves submitting a public key and a claimed identity
to a certification authority, generally via an ASN.1 BER-encoded PKCS#10
request4 submitted through a web form. RFC 2986 describes the full schema of
PKCS#10 requests; however, due to the nature of ASN.1, the encoding reflects
as little of the schema as possible, instead trusting that a decoder will have the
schema compiled into it.

We focus on the Subject X.509 Name because it is at the heart of the
trust model in certificates. An X.509 Name is an ASN.1 Sequence of Sets of
Sequences of OID/String pairs. These pairs can represent many descriptors, in-
cluding Country, Organization, and Organizational Unit, but in the context of
web browsers, the only name that matters is the Common Name, since the
name of the website being secured is compared against the Common Name. The

4 In an ideal world, the ASN.1-based protocols mentioned in this paper would use
DER rather than BER. Unfortunately, thanks to Postel’s robustness principle —
“be conservative in what you send, be liberal in what you accept” — real-world
encoders are willing to accept loosely-encoded BER bytestreams when called upon
to parse. As we shall see, this practice paves the way for subtle variations between
what different CAs will accept, and therein lies substantial danger.



Common Name is thus the one element that a CA must validate correctly, or
else it will issue a certificate granting rights for names that the user does not
legitimately represent.

There are thus two classes of consumer for the same sequence of bytes: CAs
and browsers. If a CA and a browser parse the same sequence differently, a
CA may grant rights incorrectly, or a browser may misinterpret what entity a
certificate represents. We now examine several real-world cases of this problem.

Multiple Common Names in one X.509 Name are handled differently

by different APIs Consider an X.509 Name where 2.5.4.3 is an OID paired
with a String, and this pair constitutes a Sequence (embedded in a Set) rep-
resenting the Common Name. If the Name contains more than one Common
Name Sequence, and each Sequence has the OID 2.5.4.3, which one will be in-
terpreted as the Common Name? Unfortunately, this behavior turns out to be
implementation-dependent. We identified four possible policies:

1. First: The Sets comprising the Name are scanned for Sequences with an OID
of 2.5.4.3. The first one that qualifies returns the associated String.

2. All-Inclusive: Each Sequence that matches the OID has its associated String
added to a list, which is returned to the caller.

3. Last: The Sets of the Sequence are scanned, and whenever a Sequence is
found that matches the desired OID, the planned response is updated to
contain only the associated String. The last Sequence to match has its String
returned.

4. Subject: No filtering is done. The entire X.509 subject is returned, either
as a string or as a list, and the caller must extract the CNs in which it is
interested. In other words, this is a client-side policy.

OpenSSL’s command-line tools use the Subject policy, and require callers to
implement text parsers, which must themselves implement one of the above
policies. The OpenSSL API provides functions which can be used to extract
Common Names; in a few lines of code, one can retrieve a list and iterate through
it. However, we discovered that many open-source projects only retrieve the first
matching CN — in fact, we could find no examples of open-source projects that
process this list properly [17, 1, 21, 16, 10].

We next consider browsers. Internet Explorer, which uses Microsoft’s Cryp-
toAPI, follows the All-Inclusive policy: if any CN in the X.509 Subject Name
matches the domain being browsed, then IE assumes that that CN has been
validated by the issuing CA. This technically allows an attacker to shoehorn as
many CNs into a Subject Name as he wants — the specification never mentions
a limit — though in practice CAs limit the size of certificates they will generate.
Still, this allows for a degree of parallelization in attack generation against IE.

NSS, the cryptographic library behind Mozilla Firefox, respects only the last

CN in the Subject Name. This would limit an attacker to one malicious name
per certificate — except that the name may be a wildcard, which NSS does not
restrict against. As such, one successful breach against one CA will allow SSL
bypass against all names under Firefox.



Inefficient BER encodings of OIDs can lead to some APIs recognizing

the OID of Common Names Validating the X.509 Subject Name in a cer-
tificate request against the (somehow) validated identity of the user requesting a
certificate is the task of the CA. In practice, we found that validation is limited to
the Common Name; all other fields, e.g., Country, Organization Name, etc., are
ignored. This leads to an even more hazardous source of disagreement between
a browser and a CA: what happens when they disagree on what constitutes a
Common Name in the first place?

As we know, a CN is an ASN.1 BER Sequence consisting of the OID 2.5.4.3
followed by a String containing the name of the website being authorized. How-
ever, BER’s flexibility with respect to byte-level encoding means that more than
one possible encoding can be interpreted as 2.5.4.3, whether that behavior is
desired or not. We have identified two ambiguities in the ASN.1 Basic Encoding
Rules which can lead to this condition.

Leading-Zero Padding. An OID is not encoded using the textual representa-
tion of its digits and ‘.’ separating nodes; rather, the encoding uses base-128. Ex-
tra 0x80 bytes can be introduced to add leading zeroes to a node, e.g. 2.5.4.0003.
OpenSSL’s OID resolver catches leading-zero padding — it does not interpret
2.5.4.03 and the like as the Common Name OID — but its textual representa-
tion of 2.5.4.03 is 2.5.4.3. Any implementation which mistakenly operates on this
representation instead of the parsed OID is in for a nasty surprise. Worse, how-
ever, is CryptoAPI, whose OID parser happily strips off leading-zero padding,
interprets 2.5.4.{0}∗3 as 2.5.4.3, and resolves it to Common Name. Assuming
the CA passes 2.5.4.3 (the textual form) into the final certificate as yet another
unrecognized element of the X.509 Subject Name, IE will allow an attacker full
access to any name he wants.

Integer Overflow. Since an OID is encoded as a base-128 integer, which is
then converted to a native form, an ASN.1 parser which fails to take into account
the fact that these integers are unbounded may fall victim to integer-overflow at-
tacks. This is as simple as passing 2.5.4.18446744073709551619 as an OID, since
18446744073709551619 = 264 + 3. OpenSSL wisely uses a bignum library, and is
not susceptible, but until recently, CryptoAPI expected integers to be no larger
than a 64-bit unsigned long, and mistakenly recognized anything congruent to
n in a field modulo 264 as n. Thus, IE was easily tricked into accepting anything

as a CN, simply by passing an OID that overflows.

Early null terminators in an X.509 Name can cause some APIs to

recognize different Common Name values 5 Having explored the semantics
of the CN field itself and how OIDs are recognized, we now turn to the parsing
of the CN string. Since ASN.1 BER encodes its strings “Pascal-style”, with an
explicit length field, rather than “C-style”, with a string ending at the first 0x00
value, a string with one or more null values is still valid BER as long as its length
field is correct. Two problems arise from this: first, an incorrect length field can

5 This attack was independently and simultaneously discovered by Moxie Marlinspike,
who presented it at Black Hat 2009 the same day that we did.



force reading or writing of data outside the blob being parsed, and second, once
the binary data has been resolved to a string, C-style interpretation can cause
unexpected behavior.

Consider an X.509 SN containing CN=www.bank.com[NULL].badguy.com.
OpenSSL parses this as CN=www.bank.com\x00.badguy.com. Perl’s
Crypt::OpenSSL::X509 module goes even further, eliding the null to read
CN=www.bank.com.badguy.com. And OpenSSL’s own
X509 NAME get text by NID function terminates on the null. However, be-
fore we get ahead of ourselves, what do the CAs attempt to validate?

Validation typically occurs either by checking the whois for the domain in
question or by attempting to retrieve a selected file from the server identified
by DNS. In both cases, with our example, the CA is being asked to validate a
strangely named server under badguy.com. The technical contact listed in the
whois for badguy.comwill presumably approve any request sent by the CA. But
what if a DNS query is actually issued for www.bank.com\x00.badguy.com? If
the client resolver strips the slash, the query becomes a lookup for
www.bank.comx00.badguy.com, which the attacker simply hosts. If the DNS
query contains a null byte, it will likely be rejected by the nameserver, since
null is an invalid character in DNS. If the slash is not stripped, the query
propagates to the attacker, who can then reply with an IP address.

Unfortunately, neither Firefox nor IE handle nulls in the CN either; both
interpret our malicious example above as CN=www.bank.com.

OpenSSL’s mechanisms for emitting X.509 Subject Names are vul-

nerable to injection attacks Although OpenSSL provides many scriptable
command-line operations which can automate many aspects of PKI, it cannot
automate the process of validating an identity. However, it can and does emit
the X.509 Subject Name at various places from the command line, specifically to
make it possible to audit the name as necessary. The CA need only write code to
parse the text from OpenSSL’s command line, rather than linking to OpenSSL’s
function calls or having to implement its own ASN.1 parser. While this approach
is much easier, it does beg the question: Will the X.509 Subject Name parsed
by the CA’s text parser, after OpenSSL has munged it through its text filters,
match the X.509 Subject Name ultimately contained with the PKCS#10 re-
quest, embedded within the generated X.509 Certificate, and delivered to the
user’s browser for validation?

If OpenSSL’s default “compat” mode is used to emit X.509 Subject Names,
not necessarily. (Three other modes, not enabled by default, are safe against the
following attack.)

There are three points at which output from OpenSSL’s command line inter-
face might be parsed by a CA, looking to validate an X.509 Subject Name before
certificate delivery to a client. The first, and easiest, is while signing a PKCS#10
Certificate Request, as the CN is emitted in a line that begins with “subject=”.
The client could also dump the PKCS#10 request to text and parse that. Or,
the CA might sign the certificate no matter what, but suppress returning it to



the user unless it is successfully validated. In this case, the generated certificate
can be dumped and the Subject Name extracted.

In all three cases, however, the CA is parsing ASCII characters, rather than
the actual ASN.1 tree the browser will ultimately validate. What the CA knows
of that structure, it extracts from the ASCII, by splitting on the presence of
commas, slashes, and other so-called “escape characters” in the text. But what
if the value of one of the non-validated elements in the X.509 Subject Name
— OrganizationName (O), perhaps — itself contained escape characters? This
constitutes yet another form of injection attack, directly akin to SQL injection
(causing a variable in a SQL query to appear to be something more) or cross-site
scripting (causing a variable in an HTML page to appear to be something more).

And, indeed, using an organizationName of Badguy Inc/

CN=www.badguy.com with an actual CN of www.bank.com results in a situa-
tion where the request and generated certificate appear, to a simple regular-
expression match on the emitted ASCII, to have multiple CNs, with the first
being www.badguy.com — and no way to tell that the actual CN, as denoted by
OID, is www.bank.com. The CA’s business logic is the only line of defense, and
as we have noted, many CAs do not employ manual review.

Textual CN injection is, however, probably the simplest of all the vulner-
abilities listed in this paper to ameliorate. OpenSSL’s nameopt command-line
flag prepends fields with their field names, which disambiguates the situation for
both human readers and scripts. This option should be used in any automated
CA system which relies on the OpenSSL command line.

A non-exploitable flaw exists in all of the filtering modes for OpenSSL <

0.9.8a, when a two– or four–byte–wide character set is filtered. The flaw is in
the do buf handler in A strex.c, and involves the assumption that ASN.1 strings
that contain 2– or 4–byte characters will be a multiple of 2 or 4 bytes. This is
true for legitimate strings, but we can craft malicious ones for which it is not
true; providing the handler with a string that thwarts its assumption causes the
handler to fail. However, the pointer that OpenSSL uses to keep track of its
place in the string is never actually written to; thus, what in any other codebase
might be a trivial exploit merely becomes a denial of service.

4.3 PKCS#10-Tunneled SQL Injection

As mentioned earlier, ASN.1 allows many string types, with BMPString (UTF-
16, supposedly minus certain characters) and UTF8String being the most flexi-
ble, but UniversalString is also worthy of analysis. This is a problem of insecurity
through obscurity: since these encodings are rather abstruse, strings which use
them may be injected into backend CA databases without sufficient validation.
Unicode-based database injection attacks also come into play here. SQL injec-
tion into a CA’s database backend would be distinctly problematic, due to the
special trust this particular data store has to the rest of the Internet.



4.4 PKCS#10-Tunneled ASN.1 Attacks

ASN.1 BER is tricky to parse, with many, many possibilities for consistent and
predictably exploitable attack surfaces. The PROTOS project found a large
number of vulnerabilities, via the SNMP consumer, but it is possible that some
of the ASN.1 BER parsers found in commercial CA implementations were not
covered in the 2002 PROTOS lockdown and thus are still vulnerable.

4.5 SSL Client Authentication Bypass

Many of the attacks in this paper have centered on vagaries with X.509 Subject
Name validation. Bypassing the checks yields a certificate for somebody else’s
name. But what does it mean to have a certificate? For what purposes can it
be used? In practice, most X.509 implementations support checking of a field
called “Extended Key Usage”, or EKU. EKUs come from two different sources.
First, an EKU can show up in a leaf node as an explicit X.509 extension. In this
context, a CA asserts the trustworthiness of a certificate. Second, an EKU can
be applied out of band to a CA’s root certificate, when the CA’s root certificate
is added to the browser’s trust store. In this context, the browser manufacturer
is limiting the trust semantics that a particular CA is allowed to express.

The most commonly used EKU is “Server Authentication”, which states that
a certificate may be used to validate a server to a client. But there are others,
as we see specifically in the MD2 certificate we discussed transferring the self-
signature: specifically, we are more interested in Client Authentication.

Most web sites use SSL certificates to authenticate the server to the client,
followed by passwords to authenticate the client to the server. It is possible to use
certificates to authenticate the client to the server as well, but this has a signifi-
cant deployment and usability cost and is avoided by all but the most security-
sensitive implementations. For these implementations, the user goes through the
same CA experience as the server — except the X.509 Subject Name refers to
him, not a website. A certificate-bearing SSL client, after authenticating the
server, can then present his own certificate. If the certificate validates on the
server — meaning that it chains back to a root trusted for Client Authentica-
tion — then some mapping will occur between the X.509 Subject Name and the
application’s own user database, and the user will be logged in.

These systems can fail in several major ways. First, one of the root certifi-
cates, used by the server to identify the client, might have its certificate com-
promised. For example, the MD2 attack discussed earlier would yield access to a
VeriSign root cert with the Client Authentication EKU set in most trust stores.
In the real world circa 2009, most systems are not intended to accept Client Au-
thentication as asserted by a public CA. Instead, private CAs issue certificates
to internal X.509 Subject Names, and those certs are accepted by servers in the
infrastructure. However, this was not how SSL or X.509 was supposed to work.
What was supposed to happen was that every user of the Internet would acquire
strong cryptographic credentials from global CAs, which could be presented on
demand in lieu of passwords. Through this path, a user at Microsoft could log



into a server at Yahoo, and neither Microsoft nor Yahoo would have to interact
with each other’s private CAs. To this day, there are systems that accept not
only certificates from their own private CA, but any CA in their certificate store
with the Client Authentication EKU. They even broadcast their list of accepted
CAs, as part of the SSL client certificate exchange.

Thus, if we compromise this VeriSign cert, we may end up with an authen-
tication bypass for some systems. (Since SSL client certificate use is generally
limited to extremely secure systems, this is of particular concern, since the lim-
ited exposure to the vulnerability is in exactly the most sensitive systems.) There
is solid evidence that this bug is exposed in the field, as per a quirk of SSL. The
SSL protocol, in order to support client authentication, will not simply accept
whatever client certificate a client intends to transmit. It instead provides exten-
sive hints — on Windows, by emitting the list of all root certificate X.509 Issuer
Names that have the “Client Authentication” bit set in the trust store. This
CTL, or Certificate Trust List, appears to be extensive, as per the “global PKI”
model that was originally hoped for. However, the server set up as described at
[13] to allow one private key to enter, actually allows by default may CAs to
express arbitrary X.509 Subject Names and thus gain access to the server.

Theoretically, Stevens and Sotirov, in their 2008 attack against MD5, were
not actually capable of similar damage; the root certificate they compromised
did not have the Client Authentication root set on it. Supposedly, this should
mean that any certificate signed by Stevens and Sotirov’s intermediate certificate
should be unable to operate as a client certificate. In practice, actual behavior
is subject to implementation quirks. The actual certificate they signed includes
an EKU of “Digital Signature, Non-Repudiation, Certificate Sign, CRL Sign”.
As per specification, this should not matter, as in-band EKU’s are only sup-
posed to be respected on leaf certificates that authenticate a given node, not on
intermediates. What actually happens is murkier.

In order to prevent their malicious certificate from being respected, Stevens
and Sotirov set the expiration date on their cert to late 2004. While this worked
for many browsers, they found applications (a chat client, in their case) that did
not realize it was important to check the expiration date. For these applications,
their false intermediate worked perfectly. EKUs are an even more obscure part
of the X.509 system. It is likely there are systems that ignore them too.

4.6 EV Hijacking

One of the more pernicious problems the web faces is the rise of phishing attacks.
Put simply, which is the real Bank of America? Is it www.bankofamerica.com?
www.bofa.com? www.bofabank.com? www.bank-of-america.com? Banks, in the
real world, use physical trappings of wealth and police authority to regulate the
abuse of their brand. Regulating the international DNS upon which the web
is built is a much trickier problem. To deal with this pressing issue — widely
exploited by phishers impersonating major banking establishments — Extended
Validation certificates were developed. It was intended that EV certificates would
simply not be issued without a thorough, manual validation of the IP behind the



claimed name. In return, the browser UI would be updated to herald the fully
validated identity of the brand. Thus, even an attacker who could legitimately
obtain a certificate for https://www.bank-of-america.com (since he was the
owner, as per DNS), would not be able to emit the same trustworthy user inter-
face, and his phishing attack would be foiled. This is what EV was designed to
do, and it succeeds reasonably well.

When Stevens and Sotirov presented their research on using MD5 to generate
certificate collisions, they admitted that the EV program was not vulnerable to
their attacks. As they pointed out, Extended Validation certificates must, at all
points in their validation chain, avoid MD5. Since Stevens and Sotirov were only
able to generate attacks against certificate signatures executed with MD5 —
and since their attack depended on automatic issuance of certificates, something
that EV is specifically designed to avoid — they were technically correct in their
assertion. The intermediate certificate they generated could not actually expose
the correct bits to force the address bar green for an arbitrary domain.

However, EV was never actually designed to stop their attack, or any of the
attacks described throughout this paper. The threat being mitigated was the $12
registration of www.bank-of-america.com combined with the $20 certificate,
not the comparatively exotic MD5 or ASN.1 collision attack combined with the
once-obscure DNS cache poisoning attack. EV offers no such defense. As Adam
Barth and Collin Jackson wrote in “Beware of Finer Grained Origins”:

The browser’s scripting policy does not distinguish between HTTPS con-
nections that use an Extended Validation (EV) certificate from those
that use non-EV certificates. For example, PayPal serves
https://www.paypal.com/ using an EV certificate, but a principal who
has a non-EV certificate for www.paypal.com can inject script into the
PayPal login page without disrupting the browser’s Extended Validation
security indicators.

An attacker who can synthesize a DV certificate for www.bank.com and DNS
cache poison www.bank.com can act as a man in the middle, using port for-
warding to negotiate EV certification with the actual server while allowing the
attacker to both read the traffic flowing between a user and www.bank.com and to
inject arbitrary data into that stream. This will work on effectively all browsers
that have implemented EV SSL. It is difficult to impossible to imagine a defense
that would not involve breaking the limited number of EV sites out there. EV
was designed to stop phishing attacks, not failure of DV certificates.

5 Remediation

5.1 Immediate Steps

The following table summarizes immediate steps which browser manufacturers,
cryptographic API maintainers, and certificate authorities should take to address
the issues we have raised:



Browser
Manufacturers

Cryptographic API
Manufacturers

Certificate
Authorities

MD2RSA Possibly, to support
Cryptographic API
changes

Yes, to change vali-
dation rules

Yes, to agree to res-
olution plan

Multiple Common
Names

Possibly, to deter-
mine policy and
measure exposure

Yes Possibly, to deter-
mine policy and
measure exposure

Inefficient ASN.1
bypass

Possibly, to deter-
mine policy and
measure exposure

Yes Possibly, to deter-
mine policy and
measure exposure

Null terminator by-
pass

Possibly, to deter-
mine policy and
measure exposure

Yes Possibly, to deter-
mine policy and
measure exposure

OpenSSL “com-
pat” bypass

No Yes, definitely for
SSL, possibly for
others

Yes, to determine if
commercial CA im-
plementations have
similar string pars-
ing layers

PKCS#10 SQL in-
jection

No Possibly, to add
support for filtering
at the API layer

Yes

PKCS#10 ASN.1
exploitation

No for the major
browsers, since pre-
sumably they’ve al-
ready had to lock
down their ASN.1
engine

Possibly, to
make sure that
PKCS#10 is being
parsed with a post-
PROTOS hardened
library

Possibly, to
make sure that
PKCS#10 is being
parsed with a post-
PROTOS hardened
library

Client certificate
bypass

No Yes, to control the
list of certificates
that a web server
will insert into the
CTL

No

EV bypass Yes, to manage
PR/understanding
around the purpose
of EV

No Possibly, to man-
age PR, and to
perhaps create a
“blacklist” of EV
certified names for
which CAs will not
issue a certificate

5.2 EV Remediation

Although the EV attack we describe is particularly pernicious, there are two
defenses that might be worth considering. A “httpev://” scheme could be de-
veloped, which would force content to only be loaded from an EV certificate.



However, this would require modifications at the crypto layer to support a new
X.509 element, declaring that a certificate could only emit the “green bar” pos-
itive feedback experience when the httpev://method was used. Otherwise, an
attacker could simply use Moxie Marlinspike’s method of forwarding a user from
http:// to https:// instead of httpev:// and acquire 99% of the positive
feedback while still being able to use his compromised DV certificate [7].

Another defense that might be interesting to explore would be a blacklist
of names that, once issued via EV, should never be issued via DV. This paper
describes many ways around the CA system. It might be interesting to have an
emergency check, just for EV, before a certificate is sent to a user that might
have the same X.509 Subject Name as an issued EV certificate.

6 Future Work

We continue to investigate certificate chain validation. It has not gone unnoticed
that X.509, which was supposed to be a fully delegatable system, never actually
found a safe way to delegate signing authority across chunks of DNS namespace.
However, we believe we can still attack chain validation. There are multiple ways
to find an issuer in X.509, and we have ways of creating valid certificates with
near-arbitrary subject names. If we can find a validation path that confuses
our certificate (which we do have the key for, but does not have any special
capabilities) with another certificate (which we do not have the key for, but does
have special capabilities) due to them sharing the exact same X.509 Subject
Name, then we believe we can generate fully Root CA equivalent certificates
without the still-temporarily-impractical MD2 attacks.

Another area we are investigating are the three Issuer paths: Authority In-
formation Access, Authority Key Identifier, and the actual X.509 Issuer Name.
Any and all of these can be used to generate collisions.

The wide array of string and length encodings available in ASN.1 also pro-
vides a rich attack surface. We suspect that it is possible to cause two encoders
to read two entirely different ASN.1 trees by cleverly manipulating length fields,
but have not yet developed a proof of concept.

Finally, there may be interesting attacks down the path of Internationalized
Domain Names. For the most part, IDNs are blocked at major CAs due to the
homograph attacks of Eric Johanson and the Shmoo Group in 2005 [5]. However,
Moxie Marlinspike showed in early 2009 that wildcards in certificates allow IDN
characters to pass validation [7]. We must consider new attacks down this path,
particularly with alternate representations that may collapse back to wildcards.
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